
EdgeCourier: An Edge-hosted Personal Service for
Low-bandwidth Document Synchronization in Mobile

Cloud Storage Services

Pengzhan Hao, Yongshu Bai, Xin Zhang, and Yifan Zhang
Department of Computer Science

SUNY Binghamton
Binghamton, NY

ABSTRACT

Using cloud storage to automatically back up content changes
when editing documents is an everyday scenario. We demon-
strate that current cloud storage services can cause unneces-
sary bandwidth consumption, especially for office suite doc-
uments, in this common scenario. Specifically, even with in-
cremental synchronization approach in place, existing cloud
storage services still incur whole-file transmission every time
when the document file is synchronized. We analyze the
problem causes in depth, and propose EdgeCourier, a sys-
tem to address the problem. We also propose the concept
of edge-hosed personal service (EPS), which has many ben-
efits, such as helping deploy EdgeCourier easily in practice.
We have prototyped the EdgeCourier system, deployed it in
the form of EPS in a lab environment, and performed exten-
sive experiments for evaluation. Evaluation results suggest
that our prototype system can effectively reduce document
synchronization bandwidth with negligible overheads.

CCS Concepts

•Networks → Cloud computing; •Human-centered
computing→Mobile computing; Ubiquitous and mo-
bile computing systems and tools; Mobile devices;

Keywords

Mobile computing; Edge computing; Cloud storage; File
synchronization; Unikernel

1. INTRODUCTION
In this paper, we investigate achieving low-bandwidth doc-

ument content synchronization for a popular scenario en-
abled by smart mobile devices (e.g., smartphones and ta-
bles) and cloud storage services: a user edits documents on
his smartphones/tablets. The content changes made by the
user are synchronized to cloud storage as they are gener-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5087-7/17/10. . . $15.00

DOI: https://doi.org/10.1145/3132211.3134447

ated, and can be further synchronized in real-time to other
devices owned by the user or his collaborators. We name
this common usage scenario as cloud-storage-backed mobile
document editing.

Low-bandwidth sync is important for cloud-storage-backed
mobile document editing. However, our motivation study
(§3.2) shows that exiting cloud storage services incur high
network traffic on mobile devices when synchronizing doc-
ument files, especially for office suite documents [9, 10, 34,
47, 63], such as word processing, spreadsheet, and presenta-
tion documents, which constitute the most commonly used
editable document formats in practice [18, 33]. Specifically,
most cloud storage services transmit the whole document
file from the mobile device to cloud storage every time when
the user saves the file, even for a small change in the file
(e.g., a single character addition). This behavior can cause
a high amount of network traffic for mobile users considering
that the“save”operation is common and happens frequently
when users edit documents. We name this common problem
as the whole-file-sync problem in the cloud-storage-backed
document editing scenario.

To solve the problem, we develop EdgeCourier, a system
to improve cloud-storage-backed document editing usage ex-
perience by significantly lowering network traffic generated
by mobile devices when synchronizing office document file
changes with cloud storage services. In the following, we in-
troduce how EdgeCourier works by summarizing the three
major challenges of solving the whole-file-sync problem, and
our corresponding designs of addressing them.

First, the proper way to solve the whole-file synchroniza-
tion issue is using an incremental synchronization approach,
with which only the changes made since the last synchro-
nization, instead of the whole file, are transmitted. How-
ever, existing techniques for this purpose, such as chunk-
ing/deduplication [5,8,16,52,57,64] and delta-encoding [20,
36, 50, 58, 65], virtually have no effect on office documents.
The reason is that, for most office applications, a small edit
in an office document can result in a substantial change in its
binary format. Moreover, the performance of existing incre-
mental sync approaches highly depends on properly choosing
the right configuration (e.g., chunk/block size) for the traffic
of interest. However, the current incremental sync methods
deployed on cloud storage services treat all sync traffic in the
same way, and hence they also do not work well for synchro-
nizing general document traffic. More details are discussed
in §3.

To address the first challenge, we design and implement

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3132211.3134447&domain=pdf&date_stamp=2017-10-12

an office-document-aware incremental sync approach, which
we name as ec-sync. Our approach is based on the ob-
servation that different types of office documents are all
standard ZIP files (with different extensions), which are
compressed archives containing a defined structure of sub-
documents [68, 70]. When a small edit is made to a docu-
ment on mobile device, the edit is recorded (in plain text)
in one of the sub-documents. Thus, the general idea of ec-
sync is to capture the actual edits by comparing the latest
version of the sub-document containing the edits against the
last-synced version, and transmit only the actual edits. Al-
though the idea of ec-sync is straightforward, to make it
work effectively and efficiently was not trivial. There were
several notable difficulties. For example, when comparing
the versions of the sub-document, using existing implemen-
tations of the diff utility [31] would contribute significant
computation and time overheads to ec-sync if the document
size is large. To address this problem, we developed ec-

diff, which is a new diff tool specifically designed for the
cloud-storage-backed document editing scenario and is able
to achieve good performance regardless the sizes of the un-
derlying files. We discuss the details of ec-sync and the
associated difficulties later in §4.1.

The second challenge for EdgeCourier is that all the pos-
sible incremental sync approaches require adding the cor-
responding processing on cloud storage servers, which can
greatly hinder them from being deployed in practice for two
reasons: one reason is that these approaches would undoubt-
edly cause significant load increase on the cloud storage
servers given their central processing nature; the other is
that it is hard, and also would take long time, for all the
cloud storage service providers to adopt such approaches.

Our approach of addressing the above challenge is to dis-
tribute the corresponding processing on cloud storage server
to network edge nodes (e.g., wireless access points, in-home
routers, and cellular towers). We propose the concept of
edge-hosted personal service (EPS for short). An EPS runs
on a network edge node, and performs a specific functional-
ity for mobile users. A mobile user can start/stop his own
EPS instance(s) on the edge node to which he is connected.
One advantage of EPS is that it can help distribute the
functionalities that are normally deployed in data centers to
network edge, to enjoy the benefits of fast deployment and
data center load reduction. For example, in the case of Edge-
Courier, each mobile user has his own EdgeCourier EPS
instance running on the edge. When the actual document
edits captured by the ec-sync method are synchronized to
a cloud storage service, they are transmitted to the user’s
EPS instance, which acquires the newest version of the doc-
ument by applying the edits on the last-synced version of
the file, and transmits the up-to-date file to cloud storage
using the original interface provided by the storage service.
This way, the incremental sync functionality can be easily
deployed without requiring any changes on cloud storage
services. There are many other useful usage scenarios and
advantages of EPS. A in-depth discussion about these usage
scenarios/advantages will be presented later in §2 and §4.2.

To implement EPS, two major considerations need to be
taken into account. First, running an EPS instance should
minimal computational resource from the hosting edge node.
This is because, in addition to performing its own function-
alities, each edge node may need to host dozens of EPS
instances of difference purposes for different users. Given

the fact that edge nodes are usually embedded devices with
limited computational resources, achieving high resource ef-
ficiency is critical to EPS. Second, since multiple users’ data
are processed in the same edge node, an EPS runtime that
can help protect users’ data security and privacy is impor-
tant. Our approach of fulfilling the above two goals is to use
Unikernel as EPS runtime environment, since Unikernels are
known for its properties of extreme lightweight and perfect
resource isolation [43–46].

The third major challenge for EdgeCourier is that to de-
ploy EdgeCourier, changes also needs to be made on mo-
bile devices side. However, requiring modifications on ei-
ther mobile apps or mobile OS is not practical for deploying
EdgeCourier on millions of mobile devices already in use.
To address this issue, we take advantage of our prior work
StoArranger [12, 13], a practical system framework running
on mobile devices that can rearrange, coordinate, and trans-
form cloud storage accesses from mobile apps.

To summarize, our contributions are as follows.
• Through detailed measurement study, we identify the com-
mon whole-file-sync problem, which incurs high sync band-
width in the popular cloud-storage-backed mobile document
editing scenario, and we demonstrate that it cannot be effec-
tively solved by the exiting incremental sync approaches.
• We design ec-sync, an effective office-document-aware in-
cremental sync approach, and EdgeCourier, a system that
integrates ec-sync and the associated tools (e.g., ec-diff)
for low-bandwidth mobile document synchronization in cloud
storage services.
• We propose the concept of edge-hosted personal service
(EPS), which has many useful application scenarios and ben-
efits. For example, we demonstrate that EPS can help de-
ploy the functionalities of EdgeCourier without requiring
changes on cloud storage services.
• We prototype the EdgeCourier system with real hardware.
We explore using Unikernel to serve as the runtime environ-
ment of EPS, which is a promising approach to deploy EPS
instances on resource-constrained edge nodes, and we report
the corresponding experiences.
• We evaluate the EdgeCourier system with real-world ex-
periments, which show that our system can achieve its goals
with little overheads.

2. RELATED WORK

Exploiting network edge for efficient mobile comput-
ing. Edge computing research has been gaining attention
rapidly [61, 71, 72]. Similar to our work, several notable ef-
forts have been focusing on utilizing computational resources
on network edge, as well as low latency, high-bandwidth
wireless connection between mobile devices and the edge, to
solve various problems or create new services.
• Cloudlets [28, 29, 60] have been used to help improve us-
age experiences on resource-constrained mobile devices. The
idea is to offload computation from mobile devices to VM-
based cloudlets located on the network edge. The low com-
munication latency between mobile devices and cloudlets
lends a great advantage over the approach of offloading to
the cloud.
• AirBox [15] targets improving usage experience of existing
cloud services on mobile devices. The idea is to onload those
latency-sensitive cloud services from data centers to network
edge, so that users can enjoy faster service response.

Table 1: Office suite applications used in the experiments and test document files generated.
Office suite / Word Processing Spreadsheet Presentation
Operating system File Format File size File Format File size File Format File size

MS Office 2013 / Windows 10 W1 .docx 159 KB S1 .xlsx 47 KB P1 .pptx 274 KB

MS Office 2011 / macOS 10.12 W2 .docx 302 KB S2 .xlsx 50 KB P2 .pptx 293 KB

MS Office / Android 7.1 W3 .docx 168 KB S3 .xlsx 49 KB P3 .pptx 256 KB

WPS / Android 7.1 W4 .docx 153 KB S4 .xlsx 46 KB P4 .pptx 237 KB

OfficeSuite Pro / Android 7.1 W5 .docx 153 KB S5 .xlsx 37 KB P5 .pptx 218 KB

LibreOffice / Ubuntu 16.04 W6 .docx 151 KB S6 .xlsx 42 KB - -† -

LibreOffice / Ubuntu 16.04 W7 .odt 172 KB S7 .ods 42 KB P6 .odp 70 KB

iWOrk / macOS 10.12 W8 .pages 588 KB S8 .numbers 911 KB P7 .key 3334 KB

†: We skipped generating the .pptx file using LibreOffice since software did not work well with .pptx format.

• ParaDrop [41] allows third-party developers to create, de-
ploy, and revoke new services for mobile users on network
edge nodes. These services enjoy faster response time than
the conventional approach of cloud deployment.
• The fast growing computation capability on network edge
nodes, as well as the stable and low-latency connection be-
tween mobile devices and the edge, have also been used to
improve video streaming experiences for mobile users [73].

We also take advantage of network edge nodes aiming to
improve usage experiences for mobile users. We propose the
concept of “edge-hosted personal service (EPS)”, which have
two main advantages: The first is that it enables developer-
customizable communication protocol on the“last-hop”com-
munication between mobile devices and the network edge.
As we demonstrate with our EdgeCourier system, it brings
two further benefits: one is that mobile end-users can enjoy
the goods of the new protocol, such as less network traffic
and longer battery life; the other is that it helps to deploy
new functionalities without the need of changing the de-
ployed cloud services. The second advantage of EPS is that
it helps distribute cloud services for mobile users to network
edge, so that they can be done on a personalized basis and
thus achieve better performances. We defer the detailed dis-
cussion to §4.2.

Network bandwidth reduction for file transmissions.
Existing solutions related to reducing network bandwidth re-
quirement for transmitting files over networks is based on the
general idea of transmitting the differences between different
files or between different versions of the same file, instead
of transmitting the whole file. These solutions use either
the chunking/deduplication approach or the delta-encoding
approach to achieve their goals.
• Solutions using the chunking/deduplication method [5, 8,
16,52,57,64] store a file in the unit of chunks, which can be
of fixed-size or varied-size. When transmitting a file, cer-
tain mechanism is applied to exploit chunk-level common-
alities between the sender and the receiver, such that the
sender only transmits the chunks not possessed by the re-
ceiver. Dropbox [23] and seafile [4], which we used in our
motivation study (§3.2), belong to this category.
• Solutions using delta-encoding (a.k.a. delta-compression)
[20, 36, 50, 58, 65] are also based on the idea of transmitting
only the content not possessed by the receiver. But with
delta-encoding, files are not necessarily stored in chunks.
Sender uses certain approach, such as rolling checksum, to
compare the similarity between the file it owns and that on
the receiver side, and only encodes the difference into the
packets sent to the receiver. Rsync [3], which we used in our

motivation study (§3.2), belong to this category.

Improving performances of cloud storage services.
Several recent studies focused on measuring and improving
usage experiences for cloud storage services. Work by Drago
et al. specifically investigated Dropbox [22]. Later, the same
group of researchers went on performed another study com-
paring the system architecture and service capabilities of five
popular cloud storage providers [21]. Work by Li et al. [37]
studied the network transmission efficiency of cloud storage
services. The authors define a metric, named Traffic Us-
age Efficiency (TUE) to quantify the bandwidth overhead
caused by different cloud storage services. Moreover, the
authors proposed batching and deferred transmission of of
small file updates to improve transmission efficiency of cloud
storage services. QuickSync [17] evaluated cloud storage
transmission performance in wireless networks. To reduce
upstream file synchronization time, the authors proposed a
network-condition-aware file chunking mechanism based on
the idea of balancing network transmission time and data
deduplication computation overhead.

3. MOTIVATION STUDY
In this section, we first give the background of cloud stor-

age services and our target mobile usage scenario, followed
by our study demonstrating the problem and the inability
of the state-of-the-art techniques to solve it.

3.1 Background
Cloud storage services refer to cloud services hosting user

files. They allow a user to upload and store files to cloud-
based storage, and access the files over the Internet from
different devices owned by the user. Examples of popular
cloud storage services include Dropbox [23], Google Drive
[26] and OneDrive [49]. Recently, accesses to cloud storage
services via mobile devices have experienced a significant
increase. For instance, the numbers of installs of the official
Android apps for Google Drive, Dropbox, and One Drive
are now more than 1 billion [27], 500 million [24], and 100
million [48], respectively.

Target scenario: cloud-storage-backed mobile doc-
ument editing. One key feature provided by cloud stor-
age services that makes them popular is automatic file sync,
with which user files are automatically synchronized between
mobile devices and cloud storage as they are generated or
changed [17,38,42]. In the meantime, smart mobile devices,
such as smartphones and tablets, have been becoming peo-
ple’s favorite platforms of performing document markup and

W1 W2 W3 W4 W5 W6 W7 W8
0

20

40

60

80

100

120

Word processing test docs

 Dropbox

 Google Drive

 OneDrive

 Seafile

 Rsync

(c)

W1 W2 W3 W4 W5 W6 W7 W8
0

20

40

60

80

100

120

Word processing test docs

(b)

W1 W2 W3 W4 W5 W6 W7 W8
0

20

40

60

80

100

120

Word processing test docs

T
P

o
F

S
 P

er
ce

n
ta

g
e

(%
)

(a)

Figure 1: TPoFS performance of synchronizing a one-character-addition edit using three cloud storage services

(Dropboxy, Google Drive, and OneDrive) and two file synchronization software (seafile and rsync). (a), (b) and (c)

show the results of adding one character at the beginning, the middle, and the end of each word documents respectively.

editing, due to their highly convenient and intuitive user
interfaces, excellent portability, and rich connectivity fea-
tures [11,54,56,62,67].

Together, smart mobile devices and the automatic sync
feature offered by cloud storage services enable a popular ap-
plication scenario, where a user uses smartphone or tablet to
edit a document file when he is on the move. The document
file is shared with his collaborators via the cloud storage au-
tomatic sync functionality. Thus, the content changes made
by the user are synchronized to the collaborators through
the cloud storage service in real-time as they are generated
(e.g., every time when user saves the document). We name
this type of scenario as cloud-storage-backed mobile docu-
ment editing.

Low-bandwidth synchronization is critical for achieving
good usage experience in cloud-storage-backed mobile docu-
ment editing for two reasons. First, document sync to/from
cloud storage is running on cellular data when user is on the
move, hence lowering network traffic generated by the sync
can reduce the financial cost for the user. Second, lower-
ing bandwidth requirement for the sync can be very helpful
for prolonging device battery life, which plays an important
role in providing good usage experience for mobile users.
Therefore, we performed a series of experiments to study
the network traffic performance when synchronizing docu-
ment content changes with existing cloud storage services.

3.2 The experiments

Experiment setup. Our initial impression about network
traffic generated between mobile devices and cloud storage
services when synchronizing content changes in office suite
documents was that most cloud storage services transmit al-
most the whole document file even when we make a small
change to the document, and the traffic could vary for docu-
ments generated by different office applications. To perform
automated and quantitative measurements, we developed a
test tool that can perform cloud-storage-backed document
editing, and can monitor, filter, and process, in an auto-
mated manner, the cloud storage related traffic generated
during the editing process.

We chose eight popular office suite applications that spans
four different operating systems. The first column of Ta-
ble 1 shows the choices of these applications. We created

three categories of test document files (i.e., word processing,
spreadsheet, and presentation) using the eight office suite
applications. We did this by first downloading a word doc-
ument, a spreadsheet document, and a presentation doc-
ument. Then we opened the documents and saved them
as separate copies using the eight office suites respectively.
Therefore, all the documents in the same category have the
same content. But since different office suites have differ-
ent proprietary implementations (while confirming the same
document specification, details later), the documents are of
different sizes. Table 1 lists the file sizes of file format ex-
tensions of the test documents.

To perform the synchronization operation, we chose three
popular cloud storage services (i.e., Dropbox [23], Google
Drive [26], and OneDrive [49]) and two well-known file syn-
chronization software (i.e., seafile [4] and rsync [3], which
implement the well-known network file transmission proto-
col LBFS [52] and the rsync algorithm [65] respectively).
We are interested in the network bandwidth requirement
when synchronizing small edits because of frequent save op-
erations in a document editing process (and hence the con-
tent change to be synchronized each time is usually small).
Therefore, when testing for each doc, our test tool first trans-
mitted the original document (e.g., W1 in Table 1) to the
storage server. Then the tool made a small edit to the doc
(e.g., adding one character to W1), and saved it. The auto
sync functionality of cloud storage services would automati-
cally synchronize the edit to the storage server once the edit
is made persistent on the disk. Our tool then measured the
network traffic generated on the local device for synchroniz-
ing the edit.

Experiment results. Figure 1, 2, and 3 show the mea-
surement results for the three categories of test docs. In the
figures, the amount of sync traffic generated is represented
as the metric of TPoFS (Traffic Payload over File Size per-
centage), which is defined as:

TPoFS = (
100× Payload of the traffic generated

Size of the file synchronized
)% (1)

The file sizes of all the test docs are listed in Table 1. Figure
1 (a), (b) and (c) present the results for the tests of adding
a character at the beginning, the middle, and the end of
the word precessing docs respectively. Figure 2 shows the
results for the tests of modifying one cell at the end of the

S1 S2 S3 S4 S5 S6 S7 S8
0

20

40

60

80

100

120

140

160
T

P
o

F
S

 P
e
rc

e
n

ta
g

e
 (

%
)

Spreadsheet test docs

 Dropbox

 Google Drive

 OneDrive

 Seafile

 Rsync

Figure 2: TPoFS performances of

syncing a one-cell-modification edit at

the end of the spreadsheet docs.

P1 P2 P3 P4 P5 P6 P7
0

20

40

60

80

100

120

140

Presentation test docs

T
P

o
F

S
 P

e
rc

e
n

ta
g

e
 (

%
)

 Dropbox

 Google Drive

 OneDrive

 Seafile

 Rsync

Figure 3: TPoFS performances of

syncing a one-object-addition edit at

the end of the presentation docs.

beginning middle end

0

25

50

75

100

C
o

n
te

n
t

d
if

fe
re

n
c
e
 p

e
rc

e
n

ta
g

e
 (

%
)

The one-char edit location

 W1

 W2

 W3

 W4

 W5

 W6

 W7

 W8

Figure 4: Binary difference percent-

ages of the word processing docs after

the one-character-addition edit.

spreadsheet docs. Figure 3 shows the results for the tests of
adding one object at the end of the presentation docs. From
the figures we can have the following three findings.

Finding-1. For all the edits in all the test docs, the TPoFS
values of Google Drive and OneDrive are larger than 100%,
suggesting that the two cloud storage services always per-
form whole-file transmissions when synchronizing edits (re-
gardless of edit sizes) in office suite documents. This finding
is in accordance with recent studies [17, 21, 37], which sug-
gested most existing cloud storage services do not support
incremental sync. Therefore, the whole-file-sync issue is not
confined to just office suite docs, but applies to all types of
files for Google Drive and OneDrive.

Finding-2. Although Dropbox is known to support in-
cremental sync [21, 37], and seafile/rsync support LBFS-
based [52]/rsync-based [65] incremental sync, small edits in
many test docs still caused almost-whole-file transmission
with Dropbox, seafile, and rsync, such as W1-W7 in Figure
1 (a) and (b), W2/W3/W7 in Figure 1 (c), S1-S7 in Figure
2, and P1/P4/P5/P6 in Figure 3.

Finding-3. Edit locations can affect sync traffic generated
for word processing documents. For example, sync traffic
reduced as the edit was moved toward the end of the docs
for W1/W4/W5/W6. But for other docs, i.e., .docx file
generated by MS Office on macOS (W2), .docx file gen-
erated by MS Office on Android (W3), and .odt file gen-
erated by LibreOffice on Ubuntu (W7), the one-character-
addition edit always caused almost-whole-file transmissions
with Dropbox, seafile and rsync. It is worth noting that
edit location has no effect on sync traffic for spreadsheet
and presentation documents as in our experiments.

One may have noticed that documents generated by the
iWork office suite on macOS consistently incurred low TPoFS
percentage. But please note that the file sizes of iWork docs
are considerably larger than those generated by other office
suites (because of the different way to construct the docs).
Thus, the resulted sync traffic were just slight lower than
or comparable to docs generated by other office suite ap-
plications. Lastly, We have also performed various other
types of small edits, such as deleting/modifying one charac-
ter, highlighting one line in word documents, adding a new
row in spreadsheet documents, and adding/deleting a slide
in presentation documents, all of which gave us the similar
findings as shown.

Why the problem matters. The above problem that
a small edit in office suite documents can cause whole-file
or almost-whole-file synchronization even with incremental
sync in place can greatly increase bandwidth requirement
in a cloud-storage-backed mobile document editing process.
This is because users tend to save the document frequently
during the editing process (which is considered as a good
habit), and each save is likely to cause a whole-file trans-
mission. For example, according to De Lara et. al. [18], the
average sizes of Word, Excel, and PowerPoint documents
retrieved from the web are 196 KB, 115 KB and 891 KB.
Suppose a user edits an office document with size of 500 KB,
and he performs the save operation 5 times a minute. Then
a 30-minute editing session would cause the user about 75
MB mobile data to synchronize the edits, which are likely
to be small in reality.

3.3 Understand the findings
To understand the causes of the problem, we used the

diff utility [31] to compare the binary content difference
between each original test document and that after the small
edit. Figure 4 shows the result for the word processing doc-
uments. From the figure we can obtain two observations.
One is that that for W2/W3/W7, the one-character-addition
edit caused over 50% percent binary difference regardless of
the edit location. The other is that for W1/W4/W5/W6,
adding one character at the beginning caused binary dif-
ference larger than 75%, and the difference reduced as the
edit was moved towards the end of the docs. Both obser-
vations can echo those in the sync traffic experiments. We
performed the same comparison for the spreadsheet and the
presentation documents, and also observed that a small edit
(regardless of its location) can usually cause a substantial
binary change in the doc’s binary format.

The reason for the above observations is that office suite
documents are constructed based on certain standards, such
as the Office Open XML standard [68] and the OpenDocu-
ment standard [68]. One common point of these standards
is that they all specify an office document format as a ZIP
archive containing a defined structure of sub-documents,
which store different information of the document, such as
content, styles, metadata, and application settings. An edit
to an office document file leads to changes in at least two
sub-documents: the one storing the doc content and the

ec-patch

ec-diff

S1 - Doc sync traffic
detection & interception

S2 - Inflate the latest doc file (blue)
and the last-synced doc file (green)

into sub-docs

...

...

...

...

S3 - Compare the corresponding sub-docs
and generate the edit-patch, which is

sent over to the sync-receiver

...

R1 - Inflate the last-synced doc file
into sub-docs

...

...

...

R2 - Apply the edit-patch on
the last-synced sub-docs to obtain

the latest sub-docs

R3 - Pack the latest sub-docs to obtain
the latest doc file

sync-sender sync-receiver

Figure 5: Overview of ec-sync, an office-document-
aware incremental synchronization approach.

one storing metadata. When user saves the document, all
the sub-documents are compressed into one ZIP archive and
written to the persistent storage. Thus, a small edit usually
leads to a substantial change in the doc’s binary format.

For the reason discussed above, existing incremental sync
techniques, such as deduplication as used in seafile and delta-
encoding as used in rsync (see §2), are not suitable for
implementing incremental synchronization for office suite
documents. Another reason is that, the performance of
deduplication-based or delta-encoding-based techniques re-
lies on choosing the proper configuration for the transmis-
sion, such as chunk size suitable to the underlying sync traf-
fic. As a result, they may not be able to work well on a
general basis.

4. SYSTEM DESIGN
Out goal is to design an effective, practical, and easily-

deployable solution, which we name as EdgeCourier, for
solving the whole-file-sync problem in the cloud-storage-backed
mobile editing scenario. In this section, we discuss the key
designs that help us achieve the goal.

4.1 Office-document-aware incremental syn-
chronization

An effective way of solving the whole-file-sync problem
is incremental sync, with which only the contents that are
different from the last-synced version of the file are trans-
mitted. However, as we showed previously, existing tech-
niques, such as those used in Dropbox, seafile and rsync, are
not suitable for synchronizing office document changes. Our
approach is ec-sync, an office-document-aware incremental
synchronization approach.

Original
sub-doc

Changed
sub-doc

(a) Edits are inserted at the
end of the sub-doc

M bytes

M bytes

M bytes

M bytes

M bytes

P bytes

Original
sub-doc

Changed
sub-doc

(b) Edits are inserted at the
beginning of the sub-doc

M bytes

M bytes

M bytes

M bytes

M bytes

N bytes
M bytes

M bytes

M bytes

M bytes

M bytes

N bytes

M bytes

M bytes

M bytes

M bytes

M bytes

P bytes
M bytes

M bytes

M bytes

M bytes

M bytes

N bytes

M bytes

M bytes

M bytes

M bytes

M bytes

P bytes

Original
sub-doc

Changed
sub-doc

(c) Edits are inserted in the
middle of the sub-doc

Identical chunk (excluded
from comparison)

Changed chunk (included in
comparison)

Edit Chunking
direction

Figure 6: ec-diff working scenarios.

ec-sync overview. ec-sync is based on the fact that office
documents are all standard ZIP archives containing a defined
structure of sub-documents (§3.3), and a straightforward
idea: capture and send the changes of the sub-documents of
an office document, and apply the changes on the receiver
side to obtain the latest version of the document. Figure 5
summarizes the overall steps of our ec-sync approach. There
are two participants in a ec-sync process: the sync-sender
and the sync-receiver. The operations are as follows.
• The sender first needs to detect if there is an office docu-
ment being synchronized to the receiver, and intercepts such
a transmission if so (i.e., step S1).
• To capture the sub-document changes made on the latest
version of the document being synchronized, the sender de-
compress the latest version of the document, as well as the
last-synced version of the same file (i.e., step S2). Here we
assume the sender has the last-synced version of the file. We
introduce our implementation of achieving this next in §5.
• The sender compares the corresponding sub-documents of
the latest version and the last-synced version of the docu-
ment, and places the differences in a file called edit-patch,
which is transmitted to the receiver (i.e., step S3).
• Upon receiving an edit-patch from the sender, the receiver
first decompress the last-synced version of the document of
interest into sub-documents (i.e., step R1; the details of re-
ceiver obtaining the last-synced version are discussed in §5).
• The receiver applies the edit-patch to the sub-documents
to obtain their latest version (i.e, step R2).
• Finally, the receiver compresses the patched sub-documents
into a standard ZIP file to obtain the latest version of the
document (i.e., step R3).

Efficient sub-document comparison. Compared to the
existing incremental sync approaches, ec-sync can effectively
reduce network traffic generated when synchronizing office
documents in mobile cloud storage services. However, it
would cause synchronization delay since several extra steps
are introduced in the sync process, such as intercepting the
sync traffic on the client side, inflating the documents and
generating the edit-patching by comparing the sub-docs on
the client side, and applying the edit-patch on the receiver
side. According to our experience, the step of generating
the edit-patch can introduce the most significant delay, es-
pecially when the sub-documents to compare are large. For
example, using the well-known diff utility [31] to compare
two sub-docs with 1 MB text would take about 10 seconds,

U3
U1

U2

Last-hop
wireless

connection

U1
U4

Last-hop
wireless

connection

Cloud storage
services

EPS management
services

U1's
EdgeCourier

EPS

AP's
normal

services

U2's
EC

EPS

U3's
EC

EPS

U1's
func-1
EPS

U1's
func-2
EPS

U3's
func-1
EPS

U1's
EdgeCourier

EPS

Base station's
normal

services

U4's
EC

EPS

U1's
func-1
EPS

U4's
func-2
EPS

Internet
connection

Figure 7: EPS deployment illustration.

which is un acceptably long. Therefore, it is important to
find an efficient way to perform the edit-patch generation.

Our approach of solving the problem is ec-diff, a new
text comparison tool designed for EdgeCourier. The ec-

diff tool is founded on an important observation about
the cloud-storage-backed mobile document editing scenario,
which is, because of the frequent save operations occurring in
the edit process, the edits between two consecutive save oper-
ations (and hence also between two consecutive cloud storage
sync operations) are small, and tend to close to each other
in the document. Based on this observation, ec-diff tries to
reduces the comparison size by excluding the identical text
in the two versions of a sub-document as much as possible.
Figure 6 gives examples of the three working scenarios of ec-
diff. In the examples, suppose the original sub-document
has 5M + N bytes (N < M). All the edits cause the sub-
doc’s size increased to 5M + P bytes (N < P < M).
• If the edits are placed towards the end of the sub-document
(Figure 6 (a)), the identical text in the changed sub-doc
would be above the edits. In this case, ec-diff can perform
chunking (with chunk size of M bytes) on both versions of
the sub-doc from the beginning, calculates the checksum of
the resulted chunks, and exclude those that are identical.
• If the edits are placed towards the beginning of the sub-
document (Figure 6 (b)), the identical text in the changed
sub-doc would be below the edits. In this case, ec-diff can
perform chunking from the end of the files, and exclude those
identical chunks.
• If the edits are placed in the middle of the sub-document
(Figure 6 (c)), the identical text in the changed sub-doc
would be on the both sides of the edits. In this case, ec-
diff can perform chunking from the beginning and from the
end of the file at the same time, and exclude the chunks with
the same checksums.

Therefore, generally speaking, the ec-diff algorithm works
by first performing chunking in three ways as discussed above.
If the identical chunk percentage of the three ways are all
below a certain threshold, ec-diff compare the two ver-
sions of the sub-doc entirely using an existing comparison
tool. Otherwise, ec-diff adopts the way that generates the
most identical chunks, and performs comparison on those
different chunks via an existing text comparison tool.

EC EPS
on edge node
(sync-receiver)

EC client comp.
on mobile device

(sync-sender)
Cloud storage

servicesedit-patch latest doc

EC EPS
on edge node
(sync-sender)

EC client comp.
on mobile device
(sync-receiver)

Cloud storage
servicesedit-patch latest doc

(a) The upstream document synchronization scenario

(b) The downstream document synchronization scenario.

Figure 8: EdgeCourier EPS working scenarios.

4.2 Deploying the new incremental sync ap-
proach using edge-hosted personal services
(EPS)

Deploying a new incremental sync mechanism (e.g., dedu-
plication, delta-encoding, or the proposed ec-sync) on ex-
isting cloud storage services requires modifications on cloud
storage servers. For example, the chunking/deduplication
approach would need to run on both the sender and the
receiver side of a transmission; ec-sync would need cloud
storage server to apply the edit-patch to obtain the latest
version of the document for the upstream doc synchroniza-
tion scenario. However, it would be impractical to deploy
ec-sync directly on cloud storage servers for two reasons.
First, since a cloud storage server needs to serve a large
number of users, adding extra handling would cause signif-
icant load increase on the server. Second, it would be hard
and would take a long time to convince all the cloud storage
service providers to deploy a new incremental sync approach
on their services.

Edge-hosted personal services (EPS). We propose the
concept of edge-hosted personal services (EPS) [30], which
can help solve the above problem effectively. The idea of
EPS is to utilize the fast-increasing computation resource
available on edge nodes of wireless networks to deploy individual-
based personalized services for mobile wireless users. Figure
7 shows an example of EPS deployment. On an edge node,
such as an access point or a base station, EPSes are running
to serve the mobile users within the local wireless network.
Each EPS instance serves a single mobile user for a certain
functionality. Specifically, each user can have multiple EPS
instances running on the same edge node for different ser-
vice functionalities. EPS of the same functionality can have
different instances in the same edge node, with each instance
serving a different user. Furthermore, mobile users’ EPS in-
stances are centrally stored and managed by the EPS man-
agement services locating in the cloud. Through the EPS
management services, users can migrate, start and revoke
EPS instances as needed.

EPS benefits. Generally speaking, EPS achieve two highly
useful functionalities, which are discussed as follows.
• The first functionality is to help quickly deploy those com-
munication protocols or mechanisms, which are beneficial to
mobile users, but are hard to deploy in practice for the rea-
son that modifications needed to be done on servers locating
on the other side of the Internet.

For instance, the deployment of ec-sync can be benefited
from running part of the ec-sync operations as an EPS,
which is named as “EdgeCourier EPS”, or “EC EPS” for
short. Figure 8 depicts the two scenarios of deploying ec-

sync with the help of EPS. For the upstream document sync
scenario (Figure 8 (a)), the EdgeCourier EPS performs the
operations of an ec-sync receiver, which are accepting edit-
patches sent from the corresponding mobile device, obtain-
ing the latest version of the document by applying the patch
to the last-synced version of the document, and uploading
the doc to its destination (i.e., the cloud storage server)
using the original interfaces provided by the cloud storage
services. For the downstream document sync scenario (Fig-
ure 8 (b)), the ec-sync EPS carries out the operations of an
ec-sync sender, which are intercepting cloud-storage docu-
ment sync traffic, generating edit-patches by comparing the
latest version of the document being synchronized with its
last-synced version, and sending the patches to the receiver.
• The second functionality of EPS is to distribute cloud ser-
vices or optimizations for mobile workloads to network edge,
so that they can be done on a personalized basis for better
performances. Moreover, after being distributed to the edge,
these services and optimizations can enjoy much lower com-
munication latency to/from mobile devices, because of the
high-bandwidth wireless connection to the devices.

For instance, recent studies have shown that web caching
performances on mobile devices are related to mobile users’
personal web browsing habits and preferences [74]. There-
fore, it would be more effective to perform personalized web
caching using EPS than cloud-hosted web caching services
like the one provided by Google’s Flywheel [6]. More specif-
ically, Flywheel performs cloud-based web data reduction
(e.g., through compression and image transcoding), precon-
necting and prefetching for mobile web. However, these opti-
mizations are carried out in a user-preference/habit-agnostic
manner. With EPS, it is possible to perform these optimiza-
tions on a more personalized basis to achieve better perfor-
mances.

It is worth noting that although the idea of distributing
cloud functionalities to network edge is not new [15], our
idea of EPS is more focusing on how to take advantage of
individual differences to better perform those functionalities.
However, utilizing personalized info and EPS to improve mo-
bile computing experience is out of the scope of this paper.
We leave this for our future work.

Scaling and protecting EPS instances on edge nodes
with Unikernels. The EPS concept poses two notable
challenges on its implementation and deployment:
• One challenge is how to efficiently scale EPS instances
on an edge node. Specifically, an edge node needs to be
able to support tens of EPS instances at the same time,
while maintaining its normal functionalities. To better scale
EPS instances on an edge node, we need an efficient runtime
environment for running EPSes.
• The other challenge is how to effectively protect user data
and privacy on an edge node. Specifically, since an edge
node runs EPS instances of difference users, we need an
EPS runtime environment that can effectively protect and
preserve users’ data security and privacy.

Therefore, we need a lightweight yet secure runtime envi-
ronment for running EPSes. Possible EPS runtime environ-
ment candidates can be, for example, traditional processes
environment, where each EPS instance runs in a process; vir-
tual machine environment [14,35], where each EPS instances
runs in a VM; or container environment [19,40], where each
EPS instance runs in a container.

Considering the above two challenges and the fact that

U1's device

Cloud storage
apps

Mobile OS

EdgeCourier
Device

Component

Cloud storage
apps

Mobile OS

EdgeCourier
Device

Component

U2's device...
U1's

EdgeCourier
EPS

(Unikernel)

Dom1

U2's
EdgeCourier

EPS
(Unikernel)

Dom2

AP's
normal
services

(Full-fledged
Linux)

Dom0

...
Cloud storage

services

Internet
connection

Wireless
connection

Laptop-based access point (AP)

Hardware

Xen Hypervisor

Figure 9: EdgeCourier implementation overview.

an EPS just needs to support one specific functionality, our
choice of EPS runtime environment is Unikernel [43–46].
The development of Unikernel stems from the concept of li-
brary operating system [7, 25, 55, 66]. By directly compiling
only the necessary OS features with user code, Unikernels
are specialized and small OS images with very small runtime
footprints. Unikernels are also extremely efficient in per-
forming their designated tasks, since there is no distinction
between user space and kernel space, which eliminates the
overheads of trapping to kernel in traditional OSes. More-
over, since individual Unikernels can run directly on differ-
ent VMs (as what we did in our prototype implementation),
they can provide arguably the strongest resource isolation
among all the candidates discussed. We introduce more de-
tails of using Unikernel as EPS runtime environment in our
prototype system later in §5, and evaluate our Unikernel-
based EPS runtime by comparing it to a container-based
EPS runtime in §6.

4.3 Deploying the new incremental sync ap-
proach on mobile devices

Deploying the proposed ec-sync incremental sync approach
on mobile devices faces the similar practical difficulty as de-
ploying it on cloud storage servers, which is the need of
deployment on existing mobile devices. The main challenge
is to design and implement ec-sync sender’s cloud storage
traffic interception functionality without modifying either the
mobile OS or the mobile apps. We utilize our previous work
StoArranger [12, 13] to address this challenge. StoArranger
is a practical system framework on mobile devices to coor-
dinate, rearrange, and transform cloud storage traffic with
the goal of improving cloud storage usage experience for mo-
bile users. The proxy framework provided by StoArranger
allows us to intercept cloud storage document synchroniza-
tion traffic on mobile devices smoothly and without requir-
ing changes to either the OS or the mobile apps.

5. SYSTEM IMPLEMENTATION
We have implemented the proposed EdgeCourier system

and deployed it in a lab environment in the form of EPS.
Figure 9 shows the high level overview of the prototype sys-
tem. The EdgeCourier mobile device component has been
implemented on two types of smartphones: Samsung Galaxy
S4 and Google Nexus 5x. We use a laptop1 equipped with
a quad-core 3.4 GHz CPU and 32 GB memory as the edge
node, which is normally functioning as a WiFi access point.

1We are also working on an implementation using ARM-
based ODROID XU3 board [69] as the edge node. We hope
to report our implementation experience in the near future.

The EdgeCourier EPS instances are implemented as Uniker-
nels using the Rumprun Unikernel framework [59]. The
EdgeCourier EPS instances directly run on virtual machines
(DomU) created through the Xen hypervisor [39]. The nor-
mal services of the AP are performed in the full-fledged
Linux-based host OS running in Domain 0. Next, we intro-
duce the implementation details of the EdgeCourier mobile
device component and the EdgeCourier EPS, and explain
the associated difficulties as well as how we addressed them.

5.1 Components in the prototype system
There are two entities in our EdgeCourier prototype sys-

tem: the EdgeCourier -enabled mobile device and the Edge-
Courier edge node. Figure 10 shows the components in these
two entities, and the relationship between them in the up-
stream document synchronization scenario. We describe the
different components in these two entities in this subsection,
and explain how they interact with each other later in §5.3.

EdgeCourier-enabled mobile device. Mobile device is
the host of EdgeCourier device component, which provides
all the EdgeCourier related functionalities on the mobile de-
vice. The device component consists of the following parts.
• The EPS manager, which works with its counterpart on
the edge node to create and revoke the user’s EPS instances.
• The cloud storage traffic interceptor, which is to detect and
intercept office document cloud storage sync traffic when the
mobile device is acting as the sync sender. It is implemented
based on a mobile device proxy framework, which we devel-
oped in our previous StoArranger work [12,13].
• The EdgeCourier document database, which is used to
store the previously-synced versions of office documents.
• The EdgeCourier client daemon, which performs the main
logic of the device component. We explain how the client
daemon works later when describing how the different parts
work together in the upstream doc sync scenario.
The EdgeCourier device component is implemented in

C++. The implementation has around 2,000 LOC, which
resulted in a compiled binary of 300 KB.

EdgeCourier edge node. There are generally two com-
ponents in an EdgeCourier edge node:
• The EPS manager, which runs in the host OS, and cre-
ates/revokes EPS instances using the Xen tools according to
the requests sent from the associated mobile users.
In our current prototype system, we implemented a sim-

ple interface between the EPS managers on mobile device
and on edge node, which allows users to load their EPS in-
stances from the persistent storage of the edge node, and run
in newly created DomUs. When revoked, an EPS instance
is saved back to the persistent storage of the edge node. We
leave migrating EPS instances between edge nodes with the
help of the cloud-based EPS management services (as we
proposed in §4.2) to our future work.
• EPS instances, which run as Unikernels to provide the
functionalities of EdgeCourier EPS. We used the Rumprun
Unikernel framework [59] to develop the EdgeCourier Uniker-
nel. Our EdgeCourier Unikernel implementation has about
1,000 lines of Python code, and is finally compiled as a 6.8
MB Unikernel image.

5.2 Obtaining and maintaining last-synced ver-
sions of documents

As discussed previously, both the mobile device compo-

Table 2: Traffic generated by the mobile device for syn-

chronizing a one-character-addition edit using OneDrive

app (unit: byte).

Text Edit File size Traffic Traffic (sync
size Loc. after editing (direct sync) with EC)

Start 4,950 8,621 1,538
1K Mid. 4,968 8,640 1,538

End 4,950 8,618 1,538

Start 79,874 83,551 1,538
100K Mid. 79,912 83,587 1,538

End 79,874 83,552 1,538

Start 760,214 763,894 1,538
1000K Mid. 760,215 763,894 1,538

End 760,210 763,887 1,538

nent and the EPS instances need to maintain the last-synced
versions of all the documents being synchronized to the cloud
storage. These last-synced versions of documents are stored
on the EdgeCourier document DBs on both the mobile de-
vice component and the EPS instance.

To obtain the last-synced version of the docs on the mobile
device component initially, the document version manger lo-
cating inside the client daemon monitors office document file
open operation performed by the office suite apps through
the Linux inotify API [2], which allows user code to be no-
tify when the specified file operations have been performed
on the specified files. Once an office document is opened, the
doc version manager adds the document into the document
DB. From this point on, every time when the document is
synchronized to or from the cloud storage, the latest-synced
version will be added to the doc DB to serve as the last-
synced docs in the ec-sync process next time when the same
document is being synchronized to or from the cloud storage.

It is worth noting that to reduce the storage overhead
on the EdgeCourier doc DB, it is better for the doc version
manager to monitor file write operations instead of file open,
because not every file open operation will lead to cloud stor-
age document synchronization. However, our experience is
that monitoring file write operations can lead to adding the
file with incorrect content to the doc DB. This is because at
the time when the doc version manager got notified about
the write operation, the document file of interests may have
already been changed. Adding the file into the doc DB to
serve as the last-synced version can lead to edit(s) lost next
time when the file is synchronized to the cloud storage via
the ec-sync process.

To obtain the last-synced version of the docs on EPS in-
stances initially, the EPS instances just monitor the cloud
storage document synchronization traffic, and add a docu-
ment to the doc DB on the first time when it is observed.
Similar to the mobile device component, once a document
is added to the doc DB, it is updated with the latest-synced
version every time when the document is synchronized to or
from the cloud storage, so that it can be served as the last-
synced version of the document next time when the same
file is being synchronized to or from the cloud storage.

5.3 Components interaction in the upstream
document synchronization scenario

With the background of how the last-synced version of the
docs are obtained on both the mobile device component and
the EPS instances, we can use the illustration shown in Fig-

Cloud
storage

(CS)
apps

Cloud storage
traffic intercepter Doc ver.

manager

Edit-patch
generator /

applier

CS traffic
manager

Other
apps with
network
connec-

tivity

EC doc DB

Office
suite
apps

3) cs
sync
info 4) doc

ver. info

EC client
daemon

newest
ver. doc

1) 2)

lasy-synced
ver. doc

6)

5) doc
requests

File system
and storage

open
doc last-synced

ver. doc

EC EPS
Unikernel

(DomU)

CS traffic
manager

Edit-patch
generator/applier

Doc ver.
manager

Xen Hypervisor

Hardware

Linux

Xen
tools

Acsess
Point

Function-
ality

EPS
manager

Dom0

create /
revoke

req

EPS
manager inotify

7)
edit-patch

EC doc DB

8) edit-patch

9) last-synced ver.
doc req./rsp.

10) latest doc

11) latest doc

To cloud cloud storage
services via official
cloud storage APIs

Mobile device Edge node

Figure 10: EdgeCourier implementation with an upstream sync example.

ure 10 to explain the upstream document synchronization
process with our implementation.
• An upstream doc sync process is triggered by the auto syn-
chronization feature provided by cloud storage apps. Once
an office document is changed on the persistent storage,
cloud storage apps will try to upload the latest files to cloud
storage (i.e., step 1).
• The cloud storage traffic interceptor in the device compo-
nent monitors all outgoing the HTTP traffic and redirects
only the traffic related to cloud storage document synchro-
nization to the EdgeCourier client daemon (i.e., step 2).
• The cloud storage traffic manager inside the client dae-
mon is responsible for analyzing the cloud storage traffic
redirected from the traffic interceptor, and sends the infor-
mation of the document being synchronized to the document
version manager (i.e., step 3).
• The doc version manager further processes the document
info, and informs the edit-patch generator about the disk lo-
cation of the file being synchronized, and where to find the
last-synced version of the same document (i.e., step 4).
• Using the information provided by the doc version man-
anger, the edit-patch generator fetches the latest version of
the document being synchronized directly from the file sys-
tem, and the last-synced version of the same doc from the
document DB (i.e., step 5 and 6).
• After getting the latest version and the last-synced version
of the document, the edit-patch generator generates an edit-
patch according to the process describe in §4.1, and sends
the resulted patch over to the EdgeCourier EPS instance
running on the edge node (i.e., step 7).
• The cloud storage traffic manager in the EPS instance re-
lays the edit-patch to the edit-patch applier in the same EPS
instance (i.e., step 8).
• The edit-patch applier uses the doc information in the
edit-patch to obtain the last-synced version of the same doc-
ument from the doc DB (i.e., step 9).
• Then the patch applier applies the patch to the last-synced
version of the document according to the ec-sync process de-
scribed in §4.1, and thus acquires the latest version of the
document, which is sent to the the cloud storage traffic man-
ager (i.e., step 10).

Table 3: Comparing ec-diff with existing solutions
Text size diff [31] g-diff [1, 53] ec-diff

1 KB 0.18 sec 0.046 sec 0.066 sec

100 KB 0.79 sec 0.181 sec 0.173 sec

1000 KB 10.52 sec 0.769 sec 0.415 sec

10000 KB 149.85 sec 8.63 sec 3.54 sec

• Finally, the cloud storage traffic manager sends the latest
document to the cloud storage using the original interfaces
provided by the cloud storage services (i.e., step 11).

6. SYSTEM EVALUATION
We have performed extensive real-world experiments to

evaluate our EdgeCourier prototype implementation. To
conduct the evaluation experiments in an automated manner
and to obtain quantitative measurement results, we utilized
the test tool used early in the motivation study (§3.2) to cre-
ate cloud-storage-backed mobile document editing scenarios
via the OneDrive Android app and the MS office Android
app. Specifically, by using the test tool, edits were made on
MS office suite documents through the MS office Android
app and were synchronized to the OneDrive cloud storage
via the OneDrive Android app. All the experiments were
carried out using a Samsung Galaxy S4 smartphone as the
mobile device, and the laptop-based access point (§5) as the
edge node.

6.1 Evaluating document synchronization net-
work bandwidth reduction

We first conducted an experiment to evaluate how effec-
tive our EdgeCourier prototype system can reduce docu-
ment synchronization network bandwidth. In the experi-
ment, we made three one-character-addition edits (one at
the beginning, one in the middle, and one at the end) on
each of the three word documents, which contained 1 KB,
100 KB and 1000 KB of text respectively. In total, 9 small
edits were made on the three word documents. They were
synchronized to the OneDrive cloud storage, and the amount
of network traffic generated on the mobile device was mea-

sured. The experiment was performed twice: one using our
prototype system and the other without.

Table 2 shows the results of this experiment. We can see
that when using EdgeCourier, the network traffic generated
for each edit was always 1,538 bytes, regardless the edit loca-
tion differences and the file size differences. This is because
the contents of all the 9 edits were the same (i.e., adding one
character), and hence the resulted edit-patches were iden-
tical. By contrast, directly synchronizing the documents
without using EdgeCourier caused whole-file transmissions.
The experiment result suggests that EdgeCourier can ef-
fectively save network bandwidth for mobile users during
a cloud-storage-backed document editing process. For ex-
ample, suppose a user is working on the third document
file (i.e., the one with 1000 KB of text), and he saves the
document 5 times per minute on average. Then adopting
EdgeCourier would save about 114 MB of network traffic
for a 30-minute editing session.

6.2 Evaluating document synchronization time

Document sync time with EdgeCourier. Document
synchronization time refers to the time difference between
when the sender initiates the sync process and when the
sender receives the confirmation from the receiver that the
sync process has completed. For upstream document sync
without using EdgeCourier, the document synchronization
time consists of the following components:
• Twireless: the transmission time in the local wireless net-
work between the device and the AP/base station;
• Tinet: the transmission time on the Internet between the
AP/base station and the storage server;
• Tserver: the processing time on the storage server; and
• Tother: all other time remaining.
When using EdgeCourier, Tinet and Tserver are not changed.
Twireless is likely to be reduced because the smaller band-
width requirement between mobile device and AP. However,
the adoption of EdgeCourier also introduces two main com-
ponents to the document synchronization time:
• Tdiff : the time to generate the edit-patch using ec-diff on
the client; and
• Tpatch: the time to apply the edit-patch using ec-patch on
the EPS instance.
We performed an experiment evaluate the practical im-

pact that EdgeCourier can bring to document synchroniza-
tion time. We first developed our own cloud storage sync app
so that we can instrument the app code to get the overall
document sync time. We also instrumented our prototype
system to obtain the different components in the document
sync time. In the experiment, we synchronized three doc-
uments with text size of 1 KB, 100 KB, and 1000 KB re-
spectively, each of which contained an edit of one-character-
addition. We performed the experiment 6 times, and report
the average results in Figure 11. In the figure, the line-
symbol plot shows the overall sync time when not using
EdgeCourier (i.e., the direct sync time). Each stack col-
umn shows the breakdown of the document sync time when
EdgeCourier is applied. Please note that since we have no
control over the cloud storage server, we could only instru-
ment the cloud storage traffic manager on EPS to obtain
Tinet and Tserver as one piece, to which we add Twirelss in
the figure to show the impact of network transmission (i.e.,
both wireless and wired) to the sync time. We can have four
observations from the experiment results.

• Our system achieved similar document sync time as direct
synchronization. On average, our system only introduced
around half a second delay.
• Network transmission is the most significant component
in the breakdown of sync time when using EdgeCourier.
• For document with large size, the time spent on network
transmission when using EdgeCourier is notably lower than
direct synchronization. For example, for the document with
1 MB text, using EdgeCourier caused about 0.6 second less
on network transmission than direct sync.
• As document text size increased, using ec-diff to gener-
ate the edit-patch on mobile device became another major
source of time consumption. For example, with 1 MB of
text, the time used on generating the edit-patch accounts
for about 39% of the overall sync time. We believe there
is still significant space for further reducing patch genera-
tion time. For instance, in our current implementation, the
edit-patch generator reads both the latest version and the
last-synced version of the document being synchronized from
persistent storage. A promising improvement would be to
prefetch and/or cache those frequently accessed documents
(e.g., the ones that the user is currently editing) in memory.
We leave this optimization to our future work.

Comparing ec-diff with existing solutions. The previ-
ous experiment shows that generating edit-patch has a non-
negligible impact on document sync time, especially for doc-
uments with large amount of text. However, if we had not
designed the ec-diff approach, the time overhead would be
much bigger. We performed another experiment to further
evaluate the performance of ec-diff by comparing it to the
existing solutions.

Currently the best general-purpose diff algorithm is con-
sidered to be the one developed by Myer [53]. In our ec-

diff implementation, we used an library [1], which imple-
ments Myer’s diff algorithm, to perform the actual compar-
ison of those non-identical chunks. Using the same library,
we developed a diff tool, which is notated as g-diff, for
this experiment. We compared the text comparison perfor-
mances when using the Linux diff utility [31], the g-diff,
and our ec-diff. In a comparison, one side is an origi-
nal document, the other is the same document containing
an one-char-addition edit. Table 3 shows the experiment
results. From the result we ca see that ec-diff has the
best performance among the three. As we discussed previ-
ously, the performance can be further improved by perform-
ing prefetching and caching of large and frequent accessed
documents in memory.

6.3 Evaluating using Unikernel as EPS run-
time environment

We conducted experiments to evaluate how our choice of
using Unikernel as the EPS runtime environment in our pro-
totype system can help scaling EPS instances on the Edge
node. We used Docker [19], another well-known lightweight
virtualization solution, as a comparison. To prepare for the
experiments, we ported our EdgeCourier EPS implementa-
tion to Docker-based VM. We used two metrics for evaluat-
ing the “lightweight-ness” of Unikernel-based EPS runtime
and Docker-based EPS runtime. They are 1) how the edge
node’s normal services can be affected and 2) how the per-
formance of EPS can be affected, when the number of EPS
instances is scaled up in the edge node.

For the first metric, we connected two WiFi nodes via the

1 KB 100 KB 1000 KB
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 direct sync

 other

 patch

 diff

 wireless + inet + server

D
o

c
u

m
e
n

t
sy

n
c
 t

im
e
 (

m
s)

Document text size

Figure 11: Document synchronization

time (and breakdown).

0 50 100 150 200
2

3

4

5

6

7

8 Unikernel-based EPS runtime

 Docker-based EPS runtime

A
P

's
 s

a
tu

ra
te

d
 b

a
n

d
w

id
th

 (
M

b
p

s)

Number of EdgeCourier EPS instances

Figure 12: Unikernel-based vs.

Docker-based EPS runtime: AP’s

saturated bandwidth.

0 50 100 150 200
0

1

2

3

4

5

6

7

Number of EdgeCourier EPS instances

A
v

e
ra

g
e
 d

o
c
u

m
e
n

t
sy

n
c
 t

im
e
 (

se
c
)

 Unikernel-based EPS runtime

 Docker-based EPS runtime

Figure 13: Unikernel-based vs.

Docker-based EPS runtime: docu-

ment sync time with EC EPS.

0

200

400

600

800

1000

1200

1400
 Original

 EC with NTR traff. interceptor

 EC with ARI traff. interceptor

H
T

T
P

s
fi

le
 u

p
lo

a
d

 t
im

e
 (

m
s)

HTTPs file size (KB)
50 500 1000

0

200

400

600

800

1000

1200

1400

1000500

H
T

T
P

s
fi

le
 d

o
w

n
lo

a
d

 t
im

e
 (

m
s)

HTTPs file size (KB)

 Original

 EC with NTR traff. interceptor

 EC with ARI traff. interceptor

50

(b)(a)

Figure 14: Time overhead for non-cloud-storage HTTP

traffic in EdgeCourier-enabled mobile device.

0

200

400

600

800

1000

1200

D
e
v

ic
e
 s

y
st

e
m

 p
o

w
e
r

(m
W

)

 Original

 EC with NTR traff. interceptor

50 500 1000
HTTPs file size (KB)

0

200

400

600

800

1000

1200
 Original

 EC with NTR traff. interceptor

D
e
v

ic
e
 s

y
st

e
m

 p
o

w
e
r

(m
W

)

50 500 1000
HTTPs file size (KB)

(a) (b)

Figure 15: Power overhead for non-cloud-storage HTTP

traffic in EdgeCourier-enabled mobile device.

edge node (i.e., an wireless access point), and established an
iperf [32] UDP connection between the two WiFi nodes. We
set the iperf connection bandwidth to a large value such that
the saturated bandwidth on the AP was always reached.
We increased the number of active EPS instances2 on the
edge node and observed how the saturated AP bandwidth
changed in response to the EPS instance increase. In the
experiment, we set the number of active EdgeCourier EPS
instances to 1, 5, 10, 20, 50, 100, and 200. It is worth not-
ing that in our experiment, the Docker-based EPS instances
could not reach 200, which might support our expectation
that Unikernel-based EPS runtime scales better than other
lightweight virtualization techniques, such as Docker-based
EPS runtime. Figure 12 shows the result of this experi-
ment. We can see that the AP always achieved better sat-
urated bandwidth with Unikernel-based EPS runtime than
with Docker-based runtime, and the advantage was more
obvious when the number of EPS instances was large.

For the second metric, we measured the average document
sync time achieved by the active EdgeCourier EPS instances
when scaling up the number of EPS instances. Figure 13
shows the result. We can see that Unikernel-based EPS
instances achieved slightly better document sync time than
Docker-based EPS instances.

Our experience and the experiment results (albeit the
small advantage as seen from the results) can support our
choice of choosing Unikernel as EPS runtime environment.
Please note that the Rumprun Unikernel framework we used

2An active EPS instance means the EPS instance is actively
performing its designated taks.

is in its early stage of development, and has much less com-
munity support than Docker has. By contrast, Docker is
much more mature and has undergone many optimizations.
We believe there are many opportunities, as well as chal-
lenges, to improve Unikernel used as EPS runtime environ-
ments, and we leave this to our future work.

6.4 Evaluating overheads for non-cloud-storage
HTTP traffic

As introduced previously, the implementation of the cloud
storage traffic interceptor was based on the mobile device
proxy framework developed in our previous work StoAr-
ranger [12, 13]. In our StoArranger work, we have two dif-
ferent implementations of the proxy framework: one imple-
mentation is based on network traffic redirection (short as
NTR); and the other implementation is based on app run-
time instrumentation (short as ARI). Further details can be
found in [12,13].

Since the cloud storage traffic interceptor is essentially a
HTTP proxy, it intercepts all HTTP traffic, including those
non-cloud-storage traffic. Therefore, non-cloud-storage HTTP
traffic might suffer from certain performance degradation
(e.g., needs more time, consumes more power). To evaluate
this aspect, we developed an app that uploads/downloads
files to/from an HTTPs server. Figure 14 and Figure 15
show the time needed, and the system power consumed
(measured using a Monsoon power monitor [51]), to trans-
fer non-cloud-storage files of different sizes using this app.
In the figures, the columns labeled as “original” show the
results of when not using EdgeCourier. From the results,

we can see that our prototype system only caused slightly
longer transmission time and slightly larger system power
for non-cloud-storage HTTP traffic.

7. CONCLUSION
In this paper, we have demonstrated and analyzed the

problem of whole-file synchronization for office suite docu-
ments, which is common to the existing cloud storage ser-
vices, in the common cloud-storage-backed document edit-
ing scenario. We proposed a system named EdgeCourier,
aiming to address the problem effectively. We also proposed
the concept of edge-hosted personal services (EPS), which
enjoys many benefits including help deploy the proposed
EdgeCourier system easily in practice. We implemented the
proposed EdgeCourier system and deployed it in the form of
EPS. Our extensive real-world experiment evaluation shows
that our prototype system can effectively reduce document
synchronization bandwidth with negligible overheads.

Acknowledgements

We thank the anonymous reviewers for their tremendously
valuable feedbacks. This work was supported in part by
NSF Award #1566375.

8. REFERENCES
[1] Diff, Match and Patch libraries for Plain Text.

https://code.google.com/p/google-diff-match-patch/.

[2] inotify - monitoring filesystem events. http:
//man7.org/linux/man-pages/man7/inotify.7.html.

[3] rsync. https://rsync.samba.org/.

[4] seafile. https://github.com/haiwen/seafile.

[5] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. Farsite:
Federated, available, and reliable storage for an
incompletely trusted environment. In USENIX OSDI,
2002.

[6] V. Agababov, M. Buettner, V. Chudnovsky,
M. Cogan, B. Greenstein, S. McDaniel, M. Piatek,
C. Scott, M. Welsh, and B. Yin. Flywheel: Google’s
data compression proxy for the mobile web. In
USENIX NSDI, 2015.

[7] G. Ammons, J. Appavoo, M. Butrico, D. Da Silva,
D. Grove, K. Kawachiya, O. Krieger, B. Rosenburg,
E. Van Hensbergen, and R. W. Wisniewski. Libra: a
library operating system for a jvm in a virtualized
execution environment. In ACN VEE, 2007.

[8] S. Annapureddy, M. J. Freedman, and D. Mazieres.
Shark: Scaling file servers via cooperative caching. In
USENIX NSDI, 2005.

[9] Apache Software Foundation. Apache OpenOffice.
https://www.openoffice.org/.

[10] Apple Inc. iWork. https://www.apple.com/iwork/.

[11] R. Z. Arndt. How to Get By Using a Tablet As Your
Main Computer. http:
//www.popularmechanics.com/technology/gadgets/
how-to/a16747/use-a-tablet-as-your-main-computer/.

[12] Y. Bai, X. Zhang, and Y. Zhang. Improving Cloud
Storage Usage Experience for Mobile Applications. In
ACM APSys, 2016.

[13] Y. Bai and Y. Zhang. StoArranger: Enabling Efficient
Usage of Cloud Storage Services on Mobile Devices. In
IEEE ICDCS, 2017.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
ACM SOSP, 2003.

[15] K. Bhardwaj, M.-W. Shih, P. Agarwal,
A. Gavrilovska, T. Kim, and K. Schwan. Fast, scalable
and secure onloading of edge functions using airbox.
In IEEE/ACM SEC, 2016.

[16] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche:
Making backup cheap and easy. In USENIX OSDI,
2002.

[17] Y. Cui, Z. Lai, X. Wang, N. Dai, and C. Miao.
Quicksync: Improving synchronization efficiency for
mobile cloud storage services. In ACM MobiCom,
2015.

[18] E. De Lara, D. S. Wallach, and W. Zwaenepoel.
Opportunities for bandwidth adaptation in microsoft
office documents. In USENIX Windows Symposium,
2000.

[19] Docker, Inc. Docker. https://www.docker.com/.

[20] F. Douglis and A. Iyengar. Application-specific
delta-encoding via resemblance detection. In USENIX
ATC, 2003.

[21] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and
A. Pras. Benchmarking personal cloud storage. In
ACM IMC, 2013.

[22] I. Drago, M. Mellia, M. M Munafo, A. Sperotto,
R. Sadre, and A. Pras. Inside dropbox: understanding
personal cloud storage services. In ACM IMC, 2012.

[23] Dropbox Inc. Dropbox. https://www.dropbox.com.

[24] Dropbox Inc. Official Dropbox Android app.
https://play.google.com/store/apps/details?id=com.
dropbox.android.

[25] D. R. Engler, M. F. Kaashoek, et al. Exokernel: An
operating system architecture for application-level
resource management. In ACM SOSP, 1995.

[26] Google Inc. Google Drive.
https://www.google.com/drive/.

[27] Google Inc. Official Google Drive Android app.
https://play.google.com/store/apps/details?id=com.
google.android.apps.docs.

[28] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan. Towards wearable cognitive
assistance. In ACM MobiSys, 2014.

[29] K. Ha, P. Pillai, W. Richter, Y. Abe, and
M. Satyanarayanan. Just-in-time provisioning for
cyber foraging. In ACM MobiSys, 2013.

[30] P. Hao, Y. Bai, X. Zhang, and Y. Zhang. Poster: EPS
- Edge-hosted Personal Services for Mobile Users. In
ACM MobiSys, 2017.

[31] J. W. Hunt and M. MacIlroy. An algorithm for
differential file comparison. Bell Laboratories New
Jersey, 1976.

[32] U. iPerf The ultimate speed test tool for TCP and
SCTP. Opendocument technical specification.
https://iperf.fr/.

[33] D. Johnson. The 8 most popular document formats on
the web. http://duff-johnson.com/2014/02/17/
the-8-most-popular-document-formats-on-the-web/.

[34] Kingsoft. WPS Office. https://www.wps.com/.

[35] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and

A. Liguori. kvm: the linux virtual machine monitor. In
Linux symposium, 2007.

[36] T. Knauth and C. Fetzer. dsync: Efficient block-wise
synchronization of multi-gigabyte binary data. In
USENIX LISA, 2013.

[37] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng,
Y. Liu, Y. Dai, and Z.-L. Zhang. Towards
network-level efficiency for cloud storage services. In
ACM IMC, 2014.

[38] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Y. Zhao, C. Jin,
Z.-L. Zhang, and Y. Dai. Efficient batched
synchronization in dropbox-like cloud storage services.
In ACM Middleware, 2013.

[39] Linux Foundation. Xen Project.
https://www.xenproject.org/.

[40] LinuxContainers.org. Linux Containers.
https://linuxcontainers.org/.

[41] P. Liu, D. Willis, and S. Banerjee. Paradrop: Enabling

lightweight multi-tenancy at the networkâĂŹs extreme
edge. In IEEE/ACM SEC, 2016.

[42] P. G. Lopez, M. Sanchez-Artigas, S. Toda, C. Cotes,
and J. Lenton. Stacksync: Bringing elasticity to
dropbox-like file synchronization. In ACM Middleware,
pages 49–60. ACM, 2014.

[43] A. Madhavapeddy, T. Leonard, M. Skjegstad,
T. Gazagnaire, D. Sheets, D. J. Scott, R. Mortier,
A. Chaudhry, B. Singh, J. Ludlam, et al. Jitsu:
Just-in-time summoning of unikernels. In USENIX
NSDI, 2015.

[44] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating systems
for the cloud. In ACM ASPLOS, 2013.

[45] A. Madhavapeddy and D. J. Scott. Unikernels: Rise of
the virtual library operating system. Queue, 11(11):30,
2013.

[46] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,
M. Honda, R. Bifulco, and F. Huici. Clickos and the
art of network function virtualization. In USENIX
NSDI, 2014.

[47] Microsoft Corporation. Microsoft Office.
https://www.office.com/.

[48] Microsoft Corporation. Official OneDrive Android
app. https://play.google.com/store/apps/details?id=
com.microsoft.skydrive.

[49] Microsoft Corporation. OneDrive.
https://onedrive.live.com.

[50] J. C. Mogul, F. Douglis, A. Feldmann, and
B. Krishnamurthy. Potential benefits of delta encoding
and data compression for http. In ACM SIGCOMM
Computer Communication Review, 1997.

[51] MonSoon Solutions Inc. Monsoon Power Monitor.
https:
//www.msoon.com/LabEquipment/PowerMonitor/.

[52] A. Muthitacharoen, B. Chen, and D. Mazieres. A
low-bandwidth network file system. In ACM SOSP,
2001.

[53] E. W. Myers. An o (nd) difference algorithm and its
variations. Algorithmica, 1(1):251–266, 1986.

[54] R. Pegoraro. Can an iPad Pro or Surface Pro 4 Tablet

Replace Your Laptop? http://thewirecutter.com/
reviews/can-pro-tablets-replace-your-laptop/.

[55] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky,
and G. C. Hunt. Rethinking the library os from the
top down. In ACM ASPLOS, 2011.

[56] S. J. Purewal. 10 ways your smartphone has already
replaced your laptop. http:
//www.greenbot.com/article/3006339/smartphones/
10-ways-your-smartphone-has-already-replaced-your-laptop.
html.

[57] S. Quinlan and S. Dorward. Venti: A new approach to
archival storage. In USENIX FAST, 2002.

[58] D. Rasch and R. C. Burns. In-place rsync: File
synchronization for mobile and wireless devices. In
USENIX ATC, 2003.

[59] Rump Kernel. Runprun unikernel.
https://github.com/rumpkernel/rumprun.

[60] M. Satyanarayanan, P. Bahl, R. Caceres, and
N. Davies. The case for vm-based cloudlets in mobile
computing. IEEE pervasive Computing, 8(4), 2009.

[61] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge
computing: Vision and challenges. IEEE Internet of
Things Journal, 2016.

[62] M. Smith. Can a tablet replace your laptop? We used
an iPad for three months to find out.
http://www.digitaltrends.com/computing/
can-a-tablet-replace-your-laptop/.

[63] The Document Foundation. LibreOffice.
https://www.libreoffice.org/.

[64] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp,
T. C. Bressoud, and A. Perrig. Opportunistic use of
content addressable storage for distributed file
systems. In USENIX ATC, 2003.

[65] A. Tridgell, P. Mackerras, et al. The rsync algorithm,
1996.

[66] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain,
W. Jannen, J. John, H. A. Kalodner, V. Kulkarni,
D. Oliveira, and D. E. Porter. Cooperation and
security isolation of library oses for multi-process
applications. In ACM EuroSys, 2014.

[67] J. Valcarcel. In Less Than Two Years, a Smartphone
Could Be Your Only Computer. http://www.wired.
com/2015/02/smartphone-only-computer/.

[68] R. Weir. Opendocument format: The standard for
office documents. IEEE Internet Computing,
13(2):83–87, 2009.

[69] Wikipedia. ODROID.
https://en.wikipedia.org/wiki/ODROID.

[70] Wikipedia. Office open xml.
https://en.wikipedia.org/wiki/Office Open XML.

[71] S. Yi, Z. Hao, Z. Qin, and Q. Li. Fog computing:
Platform and applications. In IEEE HotWeb, 2015.

[72] S. Yi, C. Li, and Q. Li. A survey of fog computing:
concepts, applications and issues. In ACM Workshop
on Mobile Big Data, 2015.

[73] J. Yoon, P. Liu, and S. Banerjee. Low-cost video
transcoding at the wireless edge. In IEEE SEC, 2016.

[74] Y. Zhang, C. Tan, and L. Qun. CacheKeeper: A
System-wide Web Caching Service for Smartphones.

In ACM UbiComp, 2013.

